Keysight Technologies

M9290A CXA-m PXIe X-Series Signal Analyzer 10 Hz to 3.0, 7.5, 13.6 or 26.5 GHz

Data Sheet

info@cdip.ru +7 (495) 956-20-22

Table of Contents

Technical Specifications	З
Definitions and conditions	3
Recommended best practices in use	З
Frequency and Time Specifications	4
Amplitude Accuracy and Range Specifications	6
Dynamic Range Specifications	9
PowerSuite Measurement Specifications	12
Tracking Generator Specifications	13
General Specifications	14
Inputs and Outputs	14
I/Q Analyzer	15
System Requirements	15
Software	16
Related Literature	17

Deploy a smaller microwave footprint

In test system development, one of your crucial requirements is doing more in less space—but this often means tradeoffs between footprint and precision in signal analysis. That is, until now: we've expanded the Keysight X-Series with the CXA-m, a PXIe signal analyzer that offers fully specified performance up to 26.5 GHz. It lets you handle RF and microwave signals in four slots, and you can leverage your existing code. Choose the CXA-m and deploy a smaller microwave footprint.

Technical Specifications

Definitions and conditions

Temperatures referred to in this document are defined as follows:

- Full temperature range = Individual module temperature of 5 to 68 °C, as reported by the module, and environment temperature of 0 to 55 °C.
- Controlled temperature range = Individual module temperature of 25 to 40 °C, as reported by the module, and environment temperature of 20 to 30 °C.

Specifications describe the warranted performance of calibrated instruments. Data represented in this document are specifications under the following conditions unless otherwise noted.

- It is within its calibration cycle
- Under auto couple control, except when Auto Sweep Time Rules = Accy
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on; if it had previously been stored at a temperature range inside the allowed storage range, but outside the allowed operating range
- The analyzer has been turned on at least 30 minutes with Auto Align set to normal, or, if Auto Align is set to off or partial, alignments must have been run recently enough to prevent an Alert message; if the Alert condition is changed from Time and Temperature to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user

95th percentile values indicate the breadth of the population (approx. 2σ) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.

Recommended best practices in use

- Use slot blockers and EMC filler panels in empty module slots to ensure proper operating temperatures. Keysight chassis and slot blockers optimize module temperature performance and reliability of test.
- Set chassis fan to high at environmental temperatures above 45°C.

Get more information

This CXA-m PXIe X-Series signal analyzer data sheet is a summary of the complete specifications and conditions available in the CXA-m PXIe Signal Analyzer Specification Guide. The CXA-m PXIe Signal Analyzer Specification Guide can be obtained on the web at:

www.keysight.com/find/cxa-m_manuals

For ordering information, refer to the CXA-m PXIe Signal Analyzer Configuration Guide (5992-0193EN).

Frequency and Time Specifications

prequency range DC coupled AC coupled Option F03 10 Hz to 3.0 GHz 10 MHz to 3.0 GHz Option F13 10 Hz to 13.6 GHz 10 MHz to 13.6 GHz Option F26 10 Hz to 26.5 GHz 10 MHz to 26.5 GHz 38and LO multiple (N) 1 1 2 2.95 to 7.575 GHz 2 2.95 to 7.575 GHz 2 2.94 to 12.60 GHz 3 2 9.45 to 12.60 GHz 4 12.95 to 13.05 GHz 4 12.95 to 13.05 GHz 4 12.95 to 13.05 GHz 4 4 12.95 to 13.05 GHz 4 4 12.95 to 13.05 GHz 5 4 13.40 to 15.55 GHz 6 4 13.40 to 15.55 GHz 7 4 13.40 to 15.55 GHz 8 4 12.95 to 13.05 GHz 9 4 12.95 to 13.05 GHz 10 4 12.95 to 13.05 GHz 20 4 13.40 to 15.55 GHz 20 4 12.95 to 21.05 GHz
Digition F13
Deption F26
Sand Comultiple (N) 10 Hz to 3.08 GHz 12 Sto 10 5.55 GHz 12 Sto 10 5.55 GHz 12 Sto 10 5.05 GHz 12 Sto 10 5.
1 10 Hz to 3.08 GHz 2 2.95 to 7.575 GHz 2 3.95 to 7.575 GHz 2 4.745 to 9.55 GHz 3 2 9.45 to 12.60 GHz 4 12.50 to 13.05 GHz 4 12.95 to 13.80 GHz 5 4 12.95 to 13.80 GHz 6 4 12.95 to 13.80 GHz 7 4 13.40 to 15.55 GHz 8 4 15.45 to 19.35 GHz 7 4 19.25 to 21.05 GHz 8 4 19.25 to 21.05 GHz 8 4 22.75 to 24.25 GHz 9 4 22.75 to 24.25 GHz 10 4 22.75 to 24.25 GHz 10 4 24.15 to 26.55 GHz Frequency reference Accuracy ± [(time since last adjustment x aging rate) + temperature stability + calibration accuracy] Aging rate Option PFR Standard ± 1 x 10-7 / year ± 1 x 10-6 / year ± 1.5 x 10-7 / 2 years Femperature stability Option PFR Standard 20 to 30 °C ± 1.5 x 10-8 ± 2 x 10-6 Achievable initial calibration accuracy Option PFR Standard ± 4 x 10-8 ± 2 x 10-6 Achievable initial calibration accuracy Option PFR Standard ± 4 x 10-8 ± 2 x 10-6 Standard
2 2.95 to 7.575 GHz 2 2 7.45 to 9.55 GHz 3 2 9.45 to 12.60 GHz 4 2 12.50 to 13.05 GHz 4 12.95 to 13.80 GHz 5 4 13.40 to 15.55 GHz 6 4 13.40 to 15.55 GHz 7 4 13.40 to 15.55 GHz 8 4 15.45 to 19.35 GHz 9 4 15.45 to 19.35 GHz 9 4 19.25 to 21.05 GHz 9 4 20.95 to 22.85 GHz 10 4 22.75 to 24.25 GHz 10 4 22.75 to 24.25 GHz 10 4 24.15 to 26.55 GHz 10 5 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5
2 7.45 to 9.55 GHz 3 9.45 to 12.60 GHz 4 2 12.50 to 13.05 GHz 4 12.95 to 13.80 GHz 5 4 13.40 to 15.55 GHz 6 4 13.40 to 15.55 GHz 7 4 15.45 to 19.35 GHz 8 4 19.25 to 21.05 GHz 9 4 19.25 to 21.05 GHz 10 4 22.75 to 24.25 GHz 10 4 22.75 to 24.25 GHz 10 4 24.15 to 26.55 GHz 5 24.15 to 26.55 GHz 6 24.15 to 26.55 GHz 7 24.15 to 26.55 GHz 8 24
2 9.45 to 12.60 GHz 4 2 12.50 to 13.05 GHz 4 12.95 to 13.80 GHz 5 4 12.95 to 13.80 GHz 6 4 13.40 to 15.55 GHz 6 4 15.45 to 19.35 GHz 7 4 19.25 to 21.05 GHz 8 4 20.95 to 22.85 GHz 8 4 20.95 to 22.85 GHz 9 4 22.75 to 24.25 GHz 10 4 22.75 to 24.25 GHz 10 4 22.75 to 24.55 GHz 10 4 21.5 to 26.55 GHz 10 4 21.5 to 26.55 GHz 10 10 10 10 10 10 10 10 10 10 10 10 10 1
12.50 to 13.05 GHz
4 12.95 to 13.80 GHz 4 13.40 to 15.55 GHz 6 4 15.45 to 19.35 GHz 7 4 19.25 to 21.05 GHz 8 4 20.95 to 22.85 GHz 8 4 20.95 to 22.85 GHz 9 4 22.75 to 24.25 GHz 10 4 24.15 to 26.55 GHz 8 Accuracy
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15.45 to 19.35 GHz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Frequency reference Accuracy $\pm [(\text{time since last adjustment x aging rate}) + \text{temperature stability} + \text{calibration accuracy}]$ Aging rate Option PFR Standard $\pm 1 \times 10^{-7} / \text{year} \pm 1 \times 10^{-6} / \text{year}$ $\pm 1.5 \times 10^{-7} / 2 \text{ years}$ Femperature stability Option PFR Standard 20 to 30 °C $\pm 1.5 \times 10^{-8}$ Standard Full temperature range $\pm 5 \times 10^{-8}$ $\pm 2 \times 10^{-6}$ Achievable initial calibration accuracy Option PFR Standard $\pm 4 \times 10^{-8}$ $\pm 2 \times 10^{-6}$ Example frequency reference accuracy with Option PFR) Standard $\pm 1.5 \times 10^{-8}$ $\pm 1.5 \times 10^{-8}$ Standard
Frequency reference Accuracy \pm [(time since last adjustment x aging rate) \pm temperature stability \pm calibration accuracy] Aging rate Option PFR Standard $\pm 1 \times 10^{-7}$ / year $\pm 1 \times 10^{-6}$ / year $\pm 1.5 \times 10^{-7}$ / 2 years Femperature stability Option PFR Standard 20 to 30 °C $\pm 1.5 \times 10^{-8}$ $\pm 2 \times 10^{-6}$ Full temperature range $\pm 5 \times 10^{-8}$ $\pm 2 \times 10^{-6}$ Achievable initial calibration accuracy Option PFR Standard $\pm 4 \times 10^{-8}$ $\pm 1.4 \times 10^{-6}$ Example frequency reference accuracy with Option PFR) Find the since last adjustment x aging rate) \pm temperature stability \pm calibration accuracy] Accuracy $\pm 1.10^{-7}$ / 2 years Option PFR $\pm 2.10^{-6}$ Standard $\pm 1.10^{-6}$ Standard $\pm 1.10^{-6}$ $\pm 1.10^{-6}$ $\pm 1.10^{-7}$
Accuracy \pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy] Aging rate Option PFR Standard $\pm 1 \times 10^{-7}$ / year $\pm 1 \times 10^{-6}$ / year $\pm 1.5 \times 10^{-7}$ / 2 years Temperature stability Option PFR Standard $\pm 0 \text{ to } 30 ^{\circ}\text{C}$ $\pm 1.5 \times 10^{-8}$ $\pm 2 \times 10^{-6}$ Full temperature range $\pm 5 \times 10^{-8}$ $\pm 2 \times 10^{-6}$ Achievable initial calibration accuracy Option PFR Standard $\pm 4 \times 10^{-8}$ $\pm 4 \times 10^{-6}$ Example frequency reference accuracy with Option PFR) Example frequency reference accuracy with Option PFR)
Aging rate $ \begin{array}{c} \text{Option PFR} \\ \pm 1 \times 10^{-7} / \text{year} \\ \pm 1.5 \times 10^{-7} / 2 \text{ years} \\ \\ \text{Temperature stability} \\ \text{Option PFR} \\ \text{Standard} \\ \pm 1.5 \times 10^{-8} \\ \text{Standard} \\ \pm 2 \times 10^{-6} \\ \\ \text{Full temperature range} \\ \text{Achievable initial calibration accuracy} \\ \text{Achievable initial calibration accuracy} \\ \text{Option PFR} \\ \text{Standard} \\ \pm 4 \times 10^{-8} \\ \pm 2 \times 10^{-6} \\ \\ \text{Standard} \\ \pm 4 \times 10^{-6} \\ \\ \text{Example frequency reference accuracy} \\ \text{with Option PFR} \\ \end{array} $
$\frac{\pm 1 \times 10^{-7} / \text{year}}{\pm 1.5 \times 10^{-7} / 2 \text{ years}}$ Temperature stability $\frac{20 \text{ to } 30 ^{\circ}\text{C}}{5 \text{ to } 10^{-8} \times 10^{-8}}$ Standard $\frac{\pm 1 \times 10^{-6} / \text{year}}{20 \text{ to } 30 ^{\circ}\text{C}}$ Full temperature range $\frac{\pm 5 \times 10^{-8}}{4 \times 10^{-8}}$ Achievable initial calibration accuracy $\frac{5 \times 10^{-8}}{4 \times 10^{-8}}$ Option PFR $\frac{5 \times 10^{-8}}{4 \times 10^{-8}}$ Example frequency reference accuracy with Option PFR) $\frac{\pm 1 \times 10^{-7} / \text{year}}{4 \times 10^{-8}}$ $\pm 2 \times 10^{-6}$ $\frac{5 \times 10^{-8} \times 10^{-8} + 4 \times 10^{-8}}{4 \times 10^{-8}}$ $\frac{5 \times 10^{-8} \times 10^{-8} + 4 \times 10^{-8}}{4 \times 10^{-8}}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Temperature stability Option PFR Standard $\pm 0.0 ext{ to } 30 ext{ °C}$ $\pm 1.5 ext{ to } ^{-8}$ $\pm 2 ext{ to } ^{-6}$ $\pm 2 ext{ to } ^{-6}$ $\pm 2 ext{ to } ^{-6}$ Achievable initial calibration accuracy Option PFR Standard $\pm 4 ext{ to } ^{-8}$ $\pm 4 ext{ to } ^{-8}$ $\pm 1.4 ext{ x } 10^{-6}$ Example frequency reference accuracy with Option PFR)
20 to 30 °C $\pm 1.5 \times 10^{-8}$ $\pm 2 \times 10^{-6}$ Full temperature range $\pm 5 \times 10^{-8}$ $\pm 2 \times 10^{-6}$ Achievable initial calibration accuracy Option PFR Standard $\pm 4 \times 10^{-8}$ $\pm 1.4 \times 10^{-6}$ Example frequency reference accuracy $= \pm (1 \times 1 \times 10^{-7} + 5 \times 10^{-8} + 4 \times 10^{-8})$ with Option PFR)
Full temperature range $\pm 5 \times 10^{-8}$ $\pm 2 \times 10^{-6}$ Achievable initial calibration accuracy Option PFR Standard $\pm 4 \times 10^{-8}$ $\pm 1.4 \times 10^{-6}$ Example frequency reference accuracy $= \pm (1 \times 1 \times 10^{-7} + 5 \times 10^{-8} + 4 \times 10^{-8})$ with Option PFR)
Achievable initial calibration accuracy Option PFR $\pm 4 \times 10^{-8}$ $\pm 1.4 \times 10^{-6}$ Example frequency reference accuracy with Option PFR) $= \pm (1 \times 1 \times 10^{-7} + 5 \times 10^{-8} + 4 \times 10^{-8})$
$ \pm 4 \times 10^{-8} $ Example frequency reference accuracy $ = \pm (1 \times 1 \times 10^{-7} + 5 \times 10^{-8} + 4 \times 10^{-8}) $ with Option PFR) $ \pm 1.4 \times 10^{-6} $
Example frequency reference accuracy $= \pm (1 \times 1 \times 10^{-7} + 5 \times 10^{-8} + 4 \times 10^{-8})$ with Option PFR)
with Option PFR)
vaer efter last adjustment $-+1.9 \times 10^{-7}$
year arter tast aujustinent = ± 1.3 x 10
Residual FM
Option PFR ≤ 0.25 Hz p-p in 20 ms nominal
Standard ≤ 10 Hz p-p in 20 ms nominal
Frequency readout accuracy (start, stop, center, marker)
t (marker frequency x frequency reference accuracy + 0.25 % x span + 5 % x RBW + 2 Hz + 0.5 x horizontal resolution 1)
Marker frequency counter
± (marker frequency x frequency reference accuracy + 0.100 Hz)
Delta counter accuracy ± (delta frequency x frequency reference accuracy + 0.141 Hz)
Counter resolution 0.001 Hz
Frequency span (FFT and swept mode)
Range 0 Hz (zero span), 10 Hz to maximum frequency of instrument
Resolution 2 Hz
Accuracy
Swept ± (0.25 % x span + horizontal resolution)
± (0.10 % x span + horizontal resolution)

^{1.} Horizontal resolution is span/(sweep points – 1)

Frequency and Time Specifications (Continued)

Sweep time and triggering		
Range	Span = 0 Hz	1 μs to 6000 s
	Span ≥ 10 Hz	1 ms to 4000 s
Accuracy	Span ≥ 10 Hz, swept	± 0.01 % nominal
	Span ≥ 10 Hz, FFT	± 40 % nominal
	Span = 0 Hz	± 1 % nominal
Trigger	Free run, video, external, RF burst, periodic timer	
Trigger delay	Span = 0 Hz or FFT	-150 to +500 ms
	Span ≥ 10 Hz, swept	1 μs to 500 ms
	Resolution	0.1 μs
Time gating		
Gate methods	Gated LO; gated video; gated FFT	
Gate length range (except method = FFT)	100.0 ns to 5.0 s	
Gate delay range	0 to 100.0 s	
Gate delay jitter	33.3 ns p-p nominal	
Sweep (trace) point range		
All spans	1 to 40001	
Resolution bandwidth (RBW)		
Range (-3.01 dB bandwidth)	1 Hz to 3 MHz (10 % steps), 4, 5, 6, 8 MHz	
Bandwidth accuracy (power)	1 Hz to 750 kHz	± 1.0 % (± 0.044 dB) nominal
	820 kHz to 1.2 MHz	± 2.0 % (± 0.088 dB) nominal
	1.3 to 2.0 MHz	± 0.13 dB nominal
	2.2 to 3 MHz	± 0.22 dB nominal
	4 to 8 MHz	± 0.32 dB nominal
Bandwidth accuracy (-3.01 dB)	1 Hz to 1.3 MHz	± 2 % nominal
RBW range		
Selectivity (-60 dB/-3 dB)	4.1:1 nominal	
EMI bandwidth (CISPR compliant)	200 Hz, 9 kHz, 120 kHz, 1 MHz	(Option EMC)
EMI bandwidth (MIL STD 461E compliant)	10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz, 1 MHz	(Option EMC)
Analysis bandwidth ¹		
Maximum bandwidth	Option B25	25 MHz
	Standard	10 MHz
Video bandwidth (VBW)		
Range	1 Hz to 3 MHz (10 % steps), 4, 5, 6, 8 MHz, and wid	de open (labeled 50 MHz)
Accuracy	± 6 % nominal	
Measurement speed ²		
Local measurement and display update rate	11 ms (90/s) nominal	
Remote measurement and LAN transfer rate	6 ms (167/s) nominal	
Marker peak search	5 ms nominal	
Center frequency tune and transfer		
Measurement/mode switching	22 ms nominal	

^{1.} Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.

2. Sweep points = 101.

Amplitude Accuracy and Range Specifications

Amenditude nones			
Amplitude range			
Measurement range	D ((D. 1 1	L/DANIL) L OO ID
	Preamp off	Displayed average noise le	
	Preamp on	Displayed average noise le	Vel (DANL) to +23 dBm
Input attenuator range		0 += 70 dD := 10 dD =+===	
Standard		0 to 70 dB in 10 dB steps	T 011-
Option FSA		0 to 70 dB in 2 dB steps, 7.	
Mariana aska immat laval		0 to 70 dB in 10 dB steps,	7.5 to 26.5 GHZ
Maximum safe input level			
Average total power	00 dD (1 M)	la autatta austica y 10 dB	
	+30 dBm (1 W)	Input attenuation ≥ 10 dB,	
Deeds and a service	+30 dBm (1 W)	Input attenuation ≥ 20 dB,	preamp on
Peak pulse power	. FO dD == (100 \k/)	. 10 على المراجعة المراجعة على 10	dutu and and input attacked to 200 ID
DO lk-	+50 dBm (100 W)	< 10 μs pulse wiath, < 1 %	duty cycle, and input attenuation ≥ 30 dB
DC volts	50.77		
AC coupled	± 50 Vdc		
DC coupled	± 0.2 Vdc		
Display range	04 . 4 . 10 / 11		
Log scale	0.1 to 1 dB/division in 0.1 dB steps	<u> </u>	
	1 to 20 dB/division in 1 dB steps (10	display divisions)	
Linear scale	10 divisions		
Scale units	dBm, dBmV, dBμV, dBmA, dBμA, V, V		
Frequency response		Specification	95th percentile (≈ 2♂)
(10 dB input attenuation, 20 to 3	30 °C, σ = nominal standard deviation)		
	9 kHz to 10 MHz	± 0.50 dB	± 0.4 dB
	10 MHz to 3 GHz	± 0.65 dB	± 0.5 dB
	3 to 13.6 GHz	± 1.30 dB	± 0.8 dB
	13.6 to 19.3 GHz	± 1.50 dB	± 1.0 dB
	19.3 to 24.2 GHz	± 2.20 dB	± 1.3 dB
	24.2 to 26.5 GHz	± 2.50 dB	± 1.3 dB
Preamp on (Option P03, P07, P13			
	100 kHz to 10 MHz		± 0.5 dB
	10 MHz to 3 GHz		± 1.0 dB
	3 to 7.5 GHz		± 1.2 dB
	7.5 to 13.6 GHz		± 1.0 dB
	13.6 to 21 GHz		± 1.2 dB
	21 to 24.2 GHz		± 1.8 dB
	24.2 to 26.5 GHz		± 2.4 dB
Input attenuation switching unc	ertainty	Specifications	Additional information
Attenuation > 2 dB, preamp off	50 MHz (reference frequency)	± 0.3 dB	± 0.15 dB typical
Relative to 10 dB	100 kHz to 3.0 GHz		± 0.30 dB nominal
/rafaranaa aattina)	3.0 to 7.5 GHz		± 0.50 dB nominal
(reference setting)	7.5 to 26.5 GHz		± 0.70 dB nominal

Amplitude Accuracy and Range Specifications (Continued)

Total absolute amplitude accuracy (10 dB attenuation, 20 to 30 °C, 1 Hz ≤ RB	W ≤ 1 MHz, input signal -10 to -50 dBm, all setti	ngs auto-coupled except Auto Swp Time = Accy, any
reference level, any scale, σ = nominal st		ingo dato obupted except rate out rime - root, any
At 50 MHz	± 0.40 dB	
At all frequencies	± (0.40 dB + frequency response)	
100 kHz to 3 GHz	± 0.60 dB (95th Percentile $\approx 2\sigma$)	
Preamp on (Option P03/P07/P13/P26)	± (0.36 dB + frequency response) (95th per	centile)
Precision amplitude accuracy (Option PAA		
Preamp off (10 dB attenuation)	Specification	Additional information
9 kHz to 10 MHz	± 0.70 dB	± 0.31 dB typical
10 MHz to 3 GHz	± 0.85 dB	± 0.40 dB typical
3 to 7.5 GHz	± 0.95 dB	± 0.44 dB typical
7.5 to 9.55 GHz	± 0.90 dB	± 0.38 dB typical
9.55 to 12.55 GHz	± 0.95 dB	± 0.44 dB typical
12.55 to 13.6 GHz	± 0.90 dB	± 0.32 dB typical
13.6 to 15.55 GHz	± 0.95 dB	± 0.35 dB typical
15.55 to 22.8 GHz	± 1.10 dB	± 0.50 dB typical
22.8 to 24.2 GHz	± 1.20 dB	± 0.50 dB typical
24.2 to 26.5 GHz	± 1.30 dB	± 0.57 dB typical
Preamp on (0 dB attenuation)		,,
100 kHz to 10 MHz		± 0.30 dB typical
10 MHz to 3 GHz		± 0.65 dB typical
3 to 7.5 GHz		± 0.73 dB typical
7.5 to 9.55 GHz		± 0.49 dB typical
9.55 to 12.55 GHz		± 0.71 dB typical
12.55 to 19.3 GHz		± 0.65 dB typical
19.3 to 21 GHz		± 0.80 dB typical
21 to 22.8 GHz		± 1.20 dB typical
22.8 to 24.2 GHz		± 1.39 dB typical
24.2 to 26.5 GHz		± 1.66 dB typical
Input voltage standing wave ratio (VSWR)	(≥ 10 dB attenuation)	
10 MHz to 3 GHz	< 1.2 nominal	
3 to 7.5 GHz	< 1.4 nominal	
7.5 to 13.6 GHz	< 1.6 nominal	
13.6 to 24.2 GHz	< 1.8 nominal	
24.2 to 26.5 GHz	< 2.2 nominal	
Resolution bandwidth switching uncertain	ty (referenced to 30 kHz RBW)	
1 Hz to 3 MHz RBW	± 0.15 dB	
4, 5, 6, 8 MHz RBW	± 1.0 dB	
Reference level		
Range		
Log scale	-170 to +23 dBm in 0.01 dB steps	
Linear scale	Same as log (707 pV to 3.16 V)	
Accuracy	0 dB	
Display scale switching uncertainty		
Switching between linear and log	0 dB	
Log scale/div switching	0 dB	

Amplitude Accuracy and Range Specifications (Continued)

Display scale fidelity		
-80 dBm ≤ input mixer level < -10 dBm	± 0.15 dB total	
Trace detectors		
Normal, peak, sample, negative peak, log power av	verage, RMS average, and voltage average	
Preamplifier (Option P03/P07/P13/P26)		
Frequency range	Option P03	100 kHz to 3.0 GHz
	Option P07	100 kHz to 7.5 GHz
	Option P13	100 kHz to 13.6 GHz
	Option P26	100 kHz to 26.5 GHz
Gain	100 kHz to 26.5 GHz	+20 dB nominal
Noise figure	10 MHz to 3 GHz	10 dB nominal
	3 to 26.5 GHz	DANL + 176.24 dB nominal

Dynamic Range Specifications

1 dB gain compression (two-tone)				
-		Total power at input mixer		
Preamp off	10 MHz to 7.5 GHz	+6 dBm nominal		
	7.5 to 26.5 GHz	+4 dBm nominal		
Preamp on	10 MHz to 7.5 GHz	-15 dBm nominal		
	7.5 to 26.5 GHz	–19 dBm nominal		
Displayed average noise level (DANL)				
(Input terminated, sample or average de		dB input attenuation, IF Gain =	High, 20 to 30 °C)	
Parentheses indicate typical performar				
	Preamplifier OFF	Preamplifier ON		
10 Hz	-95 dBm nominal			
100 Hz	-110 dBm nominal			
1 kHz	–115 dBm nominal			
9 kHz to 1 MHz	(-125) dBm			
1 to 10 MHz	–144, (–148) dBm	–154, (–158) dBm		
10 MHz to 1.5 GHz	–148, (–150) dBm	-160, (-163) dBm		
1.5 to 4.5 GHz	–146, (–149) dBm	–160, (–163) dBm		
4.5 to 7 GHz	–141, (–145) dBm	–157, (–161) dBm		
7 to 9.5 GHz	–144, (–147) dBm	–158, (–160) dBm		
9.5 to 13 GHz	–136, (–140) dBm	–156, (–160) dBm		
13 to 14.5 GHz	–142, (–145) dBm	–158, (–161) dBm		
14.5 to 19.3 GHz	–132, (–138) dBm	–153, (–157) dBm		
19.3 to 23 GHz	-134, (-139) dBm	–152, (–157) dBm		
23 to 24 GHz	–132, (–137) dBm	–150, (–155) dBm		
24 to 26.5 GHz	–128, (–133) dBm	-144, (-149) dBm		
Spurious responses				
Residual response	200 kHz to 26.5 GHz (swept)	-90 dBm		
(Input terminated and 0 dB attenuation)	Zero span or FFT or other	-100 dBm nominal		
	frequencies			
	Tuned frequency (f)	Excitation Freq	Mixer level	Response
Image responses (Second mixer)	•	•		
	10 MHz to 7.5 GHz	f + 1645 MHz	–10 dBm	-70 dBc (-80 dBc typical)
	7.5 GHz to 19.3 GHz	f - 1645 MHz	-10 dBm	-70 dBc (-80 dBc typical)
	19.3 GHz to 21 GHz	f + 1645 MHz	-10 dBm	-70 dBc (-80 dBc typical)
	21 GHz to 22.8 GHz	f - 1645 MHz	-10 dBm	-70 dBc (-80 dBc typical)
	22.8 GHz to 24.2 GHz	f + 1645 MHz	-10 dBm	-70 dBc (-80 dBc typical)
	24.2 GHz to 26.5 GHz	f - 1645 MHz	-10 dBm	-70 dBc (-80 dBc typical)
LO-related spurious	10 MHz to 26.5 GHz		-10 dBm	-64 dBc typical
Other spurious responses	Mixer level	Response	2 2 2	/
IF feedthrough	-10 dBm	-75 dBc (-80 dBc typical)		
First RF order (f ≥ 10 MHz from carrier)	-10 dBm	-70 dBc (-80 dBc nominal)		
High RF order ($f \ge 10$ MHz from carrier)	-30 dBm	-70 dBc (-80 dBc nominal)		
Second harmonic distortion (SHI)	00 dbiii	. o abo (oo abo nominat)		
Source frequency	SHI (nominal)			
10 MHz to 3.75 GHz	+50 dBm			
TO THE TAX TO SEE THE	, 90 ADIII			

Dynamic Range Specifications (Continued)

Third-order intermodulation dis	tortion (TOI)		
Parentheses indicate typical pe	erformance		
	Preamp off	10 MHz to 2 GHz	+12 dBm, (+16) dBm
	(Two -20 dBm tones at input mixer	2 to 3 GHz	+12 dBm, (+17) dBm
	spaced by 100 kHz, 0 dB attenuation,	3 to 7.5 GHz	+12 dBm, (+16) dBm
	20 to 30 °C	7.5 to 13.6 GHz	+11 dBm, (+15) dBm
		13.6 to 26.5 GHz	+10 dBm, (+14) dBm
Option P03/P07/P13/P26	Preamp on (Two -45 dBm tones at the preamp input spaced by 100 kHz, 0 dB attenuation, 20 to 30 °C)	10 MHz to 26.5 GHz t,	-8 dBm nominal

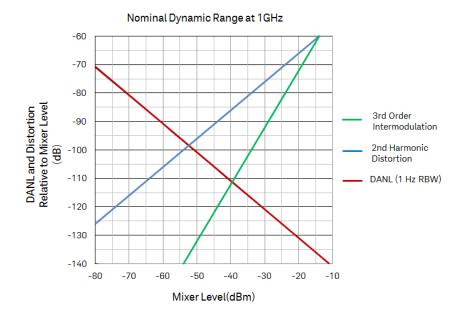


Figure 1. Nominal dynamic range for Band 0, for second and third order distortion, 10 MHz to 3 GHz

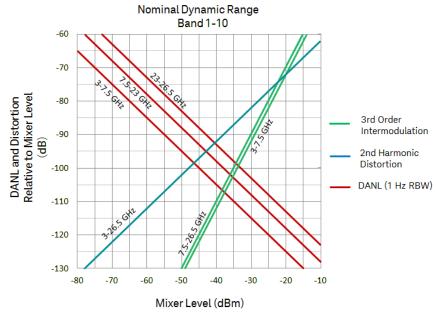


Figure 2. Nominal dynamic range, for second and third order distortion, 3 GHz to 26.5 GHz

Dynamic Range Specifications (Continued)

Phase noise	Offset	Specification	Typical			
Noise sidebands (20 to 3)	Noise sidebands (20 to 30 °C, CF = 1 GHz)					
	_100 Hz		-90 dBc/Hz nominal			
	1 kHz	-102 dBc/Hz	-105 dBc/Hz			
	10 kHz	-106 dBc/Hz	-110 dBc/Hz			
	100 kHz	-108 dBc/Hz	–110 dBc/Hz			
	1 MHz	-130 dBc/Hz	-132 dBc/Hz			
	10 MHz		-145 dBc/Hz nominal			

Nominal Phase Noise at Different Center Frequencies With RBW Selectivity Curves, Optimized Phase Noise, Versus Offset Frequency

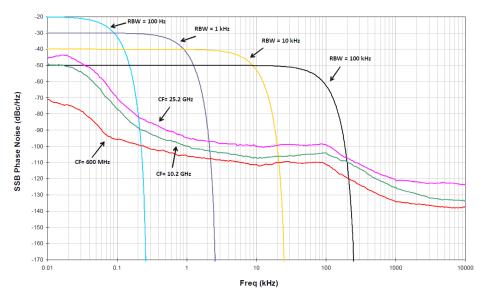


Figure 3. Nominal phase noise at different center frequencies

PowerSuite Measurement Specifications

Channel power			
Amplitude accuracy, W-CDMA or IS95	± 1.23 dB (± 0.62 dB 95th perc	entile)	
(20 to 30 °C, attenuation = 10 dB)			
Occupied bandwidth			
Frequency accuracy	± [span/1000] nominal		
Adjacent channel power			
Accuracy, W-CDMA (ACLR)		Adjacent	Alternate
(at specific mixer levels and ACLR ranges)			
MS		± 0.21 dB	± 0.25 dB
BTS		± 0.89 dB	± 0.67 dB
Dynamic range (typical)			
	Without noise correction	-68 dB	-72 dB
	With noise correction	-73 dB	-78 dB
Offset channel pairs measured	1 to 6		
Multiple number of carriers measured	Up to 12		
Power statistics CCDF			
Power statistics CCDF			
Histogram resolution	0.01 dB		
	0.01 dB		
Histogram resolution	0.01 dB 10th		
Histogram resolution Harmonic distortion		ative harmonics power (dBc), to	otal harmonic distortion in %
Histogram resolution Harmonic distortion Maximum harmonic number	10th	ative harmonics power (dBc), to	otal harmonic distortion in %
Histogram resolution Harmonic distortion Maximum harmonic number Results	10th Fundamental power (dBm), rel	ative harmonics power (dBc), to	otal harmonic distortion in %
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and intercent	10th Fundamental power (dBm), rel	ative harmonics power (dBc), to	otal harmonic distortion in %
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI)	10th Fundamental power (dBm), rel	,	otal harmonic distortion in %
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interced Burst power	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power	within burst width	otal harmonic distortion in % power, minimum power within burst, burst
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interest power Methods Results	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave	within burst width	
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interest power Methods Results Spurious emission	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p	
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interce Burst power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p	power, minimum power within burst, burst
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interces Burst power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur Dynamic range	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p	power, minimum power within burst, burst (79.1 dB typical)
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interce Burst power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur Dynamic range Absolute sensitivity	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p s 75.0 dB	power, minimum power within burst, burst
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interce Burst power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur Dynamic range Absolute sensitivity Spectrum emission mask (SEM)	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p s 75.0 dB	power, minimum power within burst, burst (79.1 dB typical)
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interce Burst power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur Dynamic range Absolute sensitivity Spectrum emission mask (SEM) cdma2000® (750 kHz offset)	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p s 75.0 dB	power, minimum power within burst, burst (79.1 dB typical) (-86.5 dBm typical)
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interce Burst power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur Dynamic range Absolute sensitivity Spectrum emission mask (SEM) cdma2000® (750 kHz offset) Relative dynamic range (30 kHz RBW)	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p s 75.0 dB -82.5 dBm	power, minimum power within burst, burst (79.1 dB typical) (-86.5 dBm typical) (78.1 dB typical)
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and intercest power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur Dynamic range Absolute sensitivity Spectrum emission mask (SEM) cdma2000® (750 kHz offset) Relative dynamic range (30 kHz RBW) Absolute sensitivity	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p s 75.0 dB -82.5 dBm 73.0 dB	power, minimum power within burst, burst (79.1 dB typical) (-86.5 dBm typical)
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interce Burst power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur Dynamic range Absolute sensitivity Spectrum emission mask (SEM) cdma2000® (750 kHz offset) Relative dynamic range (30 kHz RBW) Absolute sensitivity Relative accuracy	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p s 75.0 dB -82.5 dBm 73.0 dB -99.7 dBm	power, minimum power within burst, burst (79.1 dB typical) (-86.5 dBm typical) (78.1 dB typical)
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interce Burst power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur Dynamic range Absolute sensitivity Spectrum emission mask (SEM) cdma2000® (750 kHz offset) Relative dynamic range (30 kHz RBW) Absolute sensitivity Relative accuracy 3GPP W-CDMA (2.515 MHz offset)	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p s 75.0 dB -82.5 dBm 73.0 dB -99.7 dBm	power, minimum power within burst, burst (79.1 dB typical) (-86.5 dBm typical) (78.1 dB typical) (-102.7 dBm typical)
Histogram resolution Harmonic distortion Maximum harmonic number Results Intermod (TOI) Measure the third-order products and interce Burst power Methods Results Spurious emission W-CDMA (1 to 3.0 GHz) table-driven spur Dynamic range Absolute sensitivity Spectrum emission mask (SEM) cdma2000® (750 kHz offset) Relative dynamic range (30 kHz RBW) Absolute sensitivity Relative accuracy	10th Fundamental power (dBm), rel cepts from two tones Power above threshold, power Single burst output power, ave width	within burst width rage output power, maximum p 5 75.0 dB -82.5 dBm 73.0 dB -99.7 dBm ± 0.11 dB	power, minimum power within burst, burst (79.1 dB typical) (-86.5 dBm typical) (78.1 dB typical)

Tracking Generator Specifications

Output frequency		
Frequency range		
Option T03	2 MHz to 3 GHz	
Option T07	2 MHz to 7.5 GHz	
Option T13	2 MHz to 13.6 GHz	
Option T26	2 MHz to 26.5 GHz	
Resolution	10 Hz	
Output power level		
Range		
2 MHz to 10 GHz	-35 to 0 dBm	
10 to 20 GHz	−35 to −5 dBm	
20 to 26.5 GHz	−40 to −12 dBm	
Resolution	0.1 dB	
Absolute accuracy (at 50 MHz, –15 dBm)	± 1.0 dB typical	± 0.3 dB nominal
Output flatness (Referenced to 50 MHz, -15 dBm)	95th percentile (≈ 2 σ)	
2 MHz to 7.5 GHz	± 1.0 dB	± 0.3 dB
7.5 to 13.6 GHz	± 1.2 dB	± 0.3 dB
13.6 to 23 GHz	± 1.8 dB	± 0.6 dB
23 to 26 GHz	± 2.5 dB	± 1.2 dB
26 to 26.5 GHz		± 2.3 dB
Level accuracy		Nominal
2 MHz to 7.5 GHz		± 0.8 dB
7.5 to 13.6 GHz		± 0.9 dB
13.6 to 23GHz		± 1.5 dB
23 to 26 GHz		± 1.8 dB
26 to 26.5GHz		± 2.9 dB
Output power sweep		:
Range		
2 MHz to 10 GHz	-35 to 0 dBm	
10 to 20 GHz	-35 to -5 dBm	
20 to 26.5 GHz	-40 to -12 dBm	
Resolution	0.1 dB	
Maximum safe reverse level		
Average total power	+ 30 dBm (1 W)	
AC coupled	± 50 Vdc	
Phase noise		
Noise sidebands (Center Frequency = 1 GHz)	Offset	Typical
. ,	10 kHz	-98 dBc/Hz
	100 kHz	-105 dBc/Hz
	1 MHz	-122 dBc/Hz
Dynamic range		
	Maximum output power – displayed average	110 dBc nominal
Output VSWR		
2 MHz to 7 GHz		< 1.7:1 nominal
7 to 23 GHz		< 2.5:1 nominal
23 to 26.5 GHz		< 3.5:1 nominal

General Specifications

Temperature range		
Operating	0 to 55 °C	
Storage	-40 to 70 °C	
EMC		

Complies with European EMC Directive 2004/108/EC

- IEC/EN 61326-1
- CISPR Pub 11 Group 1, class A
- AS/NZS CISPR 11
- ICES/NMB-001

This ISM device complies with Canadian ICES-001

Cet appareil ISM est conforme à la norme NMB-001 du Canada

Environmental stress

Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirement		
Power drawn from chassis	≤ 65 W	
Weight		
Net	1.9 kg (4.2 lbs)	
Shipping	4.2 kg (9.3 lbs)	
Dimensions		
Height	132 mm (5.2 in)	
Width	82 mm (3.2 in)	
Length	202 mm (8.0 in)	
Calibration cycle		
The recommended calibration cycle is one year; calibration services are available through Keysight service centers		

Inputs and Outputs

Analog out			
Connector	SMB male, 50 Ω nominal		
Trigger out			
Connector	SMB male, 10 kΩ nominal		
Trigger in			
Connector	SMB male, $50~\Omega$ nominal		
10 MHz out			
Connector	SMB male, 50 Ω nominal		
10 MHz in			
Connector	3.5 mm female, $50~\Omega$ nominal		
RF output			
Connector	3.5mm female, $50~\Omega$ nominal		
RF input			

I/Q Analyzer

Frequency					
Frequency span					
Standard instrument	10 Hz to 10 MHz				
Option B25	10 Hz to 25 MHz				
Resolution bandwidth (spectrum	measurement)				
Range					
Overall	100 MHz to 3 MHz				
Span = 1 MHz	50 Hz to 1 MHz				
Span = 10 kHz	1 Hz to 10 kHz				
Span = 100 Hz	100 MHz to 100 Hz				
Window shapes					
Flat top, Uniform, Hanning, Gauss	ian, Blackman, Blackman-Harris, Kaise	er Bessel (K-B 70 dB, K-B 90 dB an	d K-B 110 dB)		
Analysis bandwidth					
Standard instrument	10 Hz to 10 MHz				
Option B25	10 Hz to 25 MHz				
IF frequency response (standard	10 MHz IF path)				
	ation and FFT response relative to the	ne center frequency. 20 to 30 °C			
Center frequency (GHz)	Span (MHz)	Max. error	RMS (nominal)		
≤ 3.0	≤ 10	± 0.40 dB	0.03 dB		
3.0 < f ≤ 26.5	≤ 10		0.10 dB		
IF phase linearity (deviation from	mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Peak-to-peak	RMS		
≤ 3.0	≤ 10	0.5 °	0.2 °		
3.0 < f ≤ 7.5	≤ 10	0.5 °	0.4 °		
Data acquisition (standard 10 MH					
Time record length	4,000,000 IQ sample pairs				
Sample rate	90 MSa/s				
ADC resolution	16 Bits				
Option B25 25 MHz analysis band	dwidth				
	ation and FFT response relative to the	ne center frequency. 20 to 30 °C			
Center frequency (GHz)	Span (MHz)	Max. error	RMS (nominal)		
≤ 3.0	10 to ≤ 25	± 0.45 dB	0.03 dB		
3.0 < f ≤ 26.5	10 to ≤ 25	201.0 05	0.20 dB		
IF phase linearity (deviation from			0.20 0.2		
Center frequency (GHz)	Span (MHz)	Peak-to-peak	RMS		
0.02 ≤ f < 3.0	10 to ≤ 25	1°	0.3 °		
3.0 < f ≤ 7.5	10 to ≤ 25	1 °	0.5 °		
Data acquisition (B25 IF path)					
Time record length					
IQ analyzer	4,000,000 IQ sample pairs	4 000 000 IQ sample pairs			
Sample rate	90 MSa/s				
ADC resolution	16 Bits				

System Requirements

Operating system	Windows 7 (32 & 64 bit)	
Processor speed	1.86 GHz minimum	
	2.4 GHz recommended	
Available memory	4 GB minimum	
	8 GB recommended	
Available disk space	4 GB	
Video	Support for DirectX 9 graphics with 128 MB graphics recommended (SuperVGA supported)	
Browser	Microsoft Internet Explorer 7.0 or greater	

Software

Instrument connection softw	aro		
(IO	Keysight IO library	The IO library suite offers a single entry point for connection to the most common instruments including AXIe, PXI, GPIB, USB, Ethernet/LAN, RS-232, and VXI test instruments from Keysight and other vendors. It automatically discovers interfaces, chassis, and instruments. The graphical user interface allows you to search for, verify, and update IVI instrument and soft front panel drivers for modular and traditional instruments. The IO suite safely installs in side-by-side mode with NI I/O software.	Free software
Module setup and usage	Keysight soft	The CXA-m includes a soft front panel (SFP), a software-based	Included on CD-ROM shipped
	front panel	graphical user interface (GUI) which enables the instrument's capabilities from your PC.	with module or online
Module management			
Keysight connection expert		Connection expert is the graphical user interface included in the IO libraries suite that allows you to search for, verify and update IVI instrument and soft front panel drivers for modular and traditional instruments	Free software
Programming			
Driver		Development environments	
IVI-COM IVI-C LabVIEW MATLAB		Visual Studio (VB .NET, C#, C/C++), VEE, LabVIEW, LabWindows/CVI, MATLAB	Included on CD-ROM shipped with module.
Programming assistance			
	Command expert	Assists in finding the right instrument commands and setting correct parameters. A simple interface includes documentation, examples, syntax checking, command execution, and debug tools to build sequences for integration in Excel, MATLAB, Visual Studio, and VEE.	Free software
Signal analysis software			
X-Series Apps	X-Series measurement applications	Provides measurements for analog demodulation, noise figure, phase noise, vector signal analysis, and others.	Licensed software.
89600 VSA	89600 VSA	89600 VSA software sees through the complexity of emerging and existing industry standards, serving as your window into complex signal interactions.	Licensed software.
SystemVue Declaric System Lord Design	SystemVue	SystemVue is a system-level EDA platform for designing communications and defense systems. Used with the M9290A, SystemVue enables you to create model-based design validation tests to ensure consistency from design to manufacturing.	Licensed software.

Related Literature

Literature	Pub number
M9290A CXA-m PXIe Signal Analyzer - Product Fact Sheet	5992-0044EN
M9290A CXA-m PXIe Signal Analyzer - Configuration Guide	5992-0193EN
M9018A PXIe 18 slot Chassis - Data Sheet	5990-6583EN
M9037A PXIe High Performance Embedded Controller - Data Sheet	5991-3661EN
M9036A PXIe Embedded Controller - Data Sheet	5990-8465EN